Comparing diffusion-weighted and T2-weighted MR imaging for the quantification of infarct size in a neonatal rat hypoxic-ischemic model at 24h post-injury.
نویسندگان
چکیده
PURPOSE In a neonatal rat model of hypoxic-ischemic (HI) brain injury, using T2-weighted imaging (T2WI) and diffusion-weighted imaging (DWI), we aim to determine the best MRI method of lesion quantification that reflects infarct size. MATERIALS AND METHODS Twenty 7-day-old rats underwent MRI 24h after HI brain injury was induced. Lesion size relative to whole brain was measured using T2WI and apparent diffusion coefficient (ADC) maps, applying thresholds of 60%, 70% and 80% contralateral control hemisphere mean ADC, and at day 10 post-HI on pathology with TTC staining. Multiple linear regression analysis was used to study the relationships between lesion size at MRI and pathology. RESULTS Lesion size measurement using all MRI methods significantly correlated with infarct size at pathology; using T2WI, r=0.808 (p<0.001), using 80% ADC, 70% ADC and 60% ADC thresholds, r=0.888 (p<0.001), 0.761, (p<0.001) and 0.569 (p=0.014), respectively. Eighty percent ADC threshold was found to be the only significant independent predictor of final infarct volume (adjusted R(2)=0.775). CONCLUSION At 24h post-HI, lesion size on DWI, using 80% ADC threshold is the best predictor of final infarct volume. Although T2WI performed less well, it has the advantage of superior spatial resolution and is technically less demanding. These are important considerations for experiments which utilize MRI as a surrogate method for lesion quantification in the neonatal rat HI model.
منابع مشابه
Hypoxic-ischemic encephalopathy: diagnostic value of conventional MR imaging pulse sequences in term-born neonates.
PURPOSE To retrospectively compare different magnetic resonance (MR) imaging techniques and pulse sequences for the depiction of brain injury in neonatal hypoxic-ischemic encephalopathy. MATERIALS AND METHODS The institutional review board approved this retrospective study and waived informed consent. Term-born neonates underwent MR imaging within 10 days after birth because of perinatal asph...
متن کاملAutomated detection of brain abnormalities in neonatal hypoxia ischemic injury from MR images
We compared the efficacy of three automated brain injury detection methods, namely symmetry-integrated region growing (SIRG), hierarchical region splitting (HRS) and modified watershed segmentation (MWS) in human and animal magnetic resonance imaging (MRI) datasets for the detection of hypoxic ischemic injuries (HIIs). Diffusion weighted imaging (DWI, 1.5T) data from neonatal arterial ischemic ...
متن کاملNeonatal hypoxic-ischemic encephalopathy: detection with diffusion-weighted MR imaging.
BACKGROUND AND PURPOSE Although diffusion-weighted imaging has been shown to be highly sensitive in detecting acute cerebral infarction in adults, its use in detecting neonatal hypoxic-ischemic encephalopathy (HIE) has not been fully assessed. We examined the ability of this technique to detect cerebral changes of acute neonatal HIE in different brain locations. METHODS Fifteen MR examination...
متن کاملAutomatic quantification of ischemic injury on diffusion-weighted MRI of neonatal hypoxic ischemic encephalopathy
A fully automatic method for detection and quantification of ischemic lesions in diffusion-weighted MR images of neonatal hypoxic ischemic encephalopathy (HIE) is presented. Ischemic lesions are manually segmented by two independent observers in 1.5 T data from 20 subjects and an automatic algorithm using a random forest classifier is developed and trained on the annotations of observer 1. The ...
متن کاملRodent neonatal bilateral carotid artery occlusion with hypoxia mimics human hypoxic-ischemic injury.
We report a new clinically relevant model of neonatal hypoxic-ischemic injury in a 10-day-old rat pup. Bilateral carotid artery occlusion and 8% hypoxia (1 to 15 mins, BCAO-H) was induced with varying degrees of injury (mild, moderate, severe), which was quantified using magnetic resonance imaging including diffusion-weighted and T2-weighted imaging at 24 h and 21/28 days. We developed a magnet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience
دوره 25 1 شماره
صفحات -
تاریخ انتشار 2007